If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-136=0
a = 8; b = 0; c = -136;
Δ = b2-4ac
Δ = 02-4·8·(-136)
Δ = 4352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4352}=\sqrt{256*17}=\sqrt{256}*\sqrt{17}=16\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{17}}{2*8}=\frac{0-16\sqrt{17}}{16} =-\frac{16\sqrt{17}}{16} =-\sqrt{17} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{17}}{2*8}=\frac{0+16\sqrt{17}}{16} =\frac{16\sqrt{17}}{16} =\sqrt{17} $
| -4(x+5)+5=6(x+4)+4 | | -4(x+5)+5=6(x+4)+4 | | -4(x+5)+5=6(x+4)+4 | | 8x^2-136=0 | | 50+a=110 | | 6(a-6)+9=3(a-5) | | (2x+12)/15=24/(4x+2) | | 110-a=60 | | –1=f+32 | | –1=f+32 | | –1=f+32 | | 30-x=62 | | g+13=–4 | | 30-x=62 | | 30-x=62 | | 30-x=62 | | 30-x=62 | | 1.44+x2=x2 | | 4x8=+64 | | 6t/9-22;t=-60 | | 3x+4+1=20 | | 3x+4+1=20 | | 7w+103w-3=6 | | 7w+103w-3=6 | | 7w+103w-3=6 | | (5×2=4×+6(=2x+3.5) | | (5×2=4×+6(=2x+3.5) | | (5×2=4×+6(=2x+3.5) | | (5×2=4×+6(=2x+3.5) | | 5/4b=2 | | −8(−3x−2)=24x+1524x+15 | | 5/4b=2 |